EFFICIENT TRAINING OF RBF NETWORKS FOR CLASSIFICATION
نویسندگان
چکیده
منابع مشابه
Efficient Training Of Rbf Networks For Classification
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fis...
متن کاملEfficient training of RBF neural networks for pattern recognition
The problem of training a radial basis function (RBF) neural network for distinguishing two disjoint sets in R(n) is considered. The network parameters can be determined by minimizing an error function that measures the degree of success in the recognition of a given number of training patterns. In this paper, taking into account the specific feature of classification problems, where the goal i...
متن کاملEffective training algorithms for RBF-neural networks
New structure and training algorithms of the RBF-type neural network are proposed. An extra neuron layer is added to realize the principal component method. A novel training algorithm is designed for training each separate neuron in the hidden layer, which guarantees the efficiency and finiteness of the training procedure. Results were obtained for a variety of problems. In particular, the resu...
متن کاملRegularized RBF Networks for Hyperspectral Data Classification
In this communication, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Neural Systems
سال: 2004
ISSN: 0129-0657,1793-6462
DOI: 10.1142/s0129065704001930